SRON researcher Luciano Gottardi has received an ENW-XS grant from NWO to read out a thousand X-ray detectors simultaneously with a single amplifier. The new readout follows the same principle as KIDs, which are already used to detect far-infrared and visible light particles.
Category: Technologie
Gold antenna increases sensitivity detectors for proto-planetary systems
Researchers at SRON and TU Delft have made bolometer detectors thirty percent more sensitive. Bolometers form the heart of terahertz spectrometers that can distinguish colors up to one-millionth of their wavelength. This is needed to observe astrophysical processes such as the birth of stars and planets from gas and dust clouds. The enhancement should cut the time in half that it takes a space telescope to take a spectrum.

Lightweight centimeter-sized terahertz spectrometer
Researchers at TU Delft, SRON and LongWave Photonics LLC have created a centimeter-sized, lightweight terahertz spectrometer. Current spectrometers are half a meter in size and much heavier. Weight and size play a large role since terahertz radiation is only detectable from space. Publication in Laser & Photonics Reviews.

PRIMA selected as candidate for NASA’s Probe mission
Out of the eight projects that competed to become NASA’s Probe mission, only two remain. The Probe far-Infrared Mission for Astrophysics (PRIMA) and the Advanced X-ray Imaging Satellite (AXiS) have been selected for the second round. SRON delivers the detectors for PRIMA, developed together with TU Delft.

Astrophysics in the lab: TES detectors measure X-rays from hot plasma
SRON has joined forces with the Max Planck Institute for Nuclear Physics (MPIK) and the Institut de Recherche en Astrophysique et Planetologie (IRAP) to generate reference data for astronomical observations and scrutinize the laws of hot plasma physics. The electron beam ion trap (EBIT) at MPIK in Heidelberg simulates a hot plasma, while superconducting transition-edge sensors (TES) developed by SRON measure the emitted X-ray spectra with unprecedented energy resolution.

Liquid crystal coronagraphs for crystal clear vision of a second Earth
David Doelman has been awarded a Veni grant for his research on advanced optical technologies for the next generation of space telescopes. These telescopes aim to directly study the light from Earth-like planets orbiting nearby stars, in search of evidence of liquid water and life.

NWO grant for detection of single photons from exoplanets
SRON researcher Pieter de Visser has received an ENW-M1 grant from NWO to develop detectors that catch individual light particles from planets outside our solar system. Planets mainly emit low-energy light, such as infrared radiation, which is particularly difficult to detect. De Visser is developing his MKID detectors for infrared wavelengths with ESA’s candidate space mission LIFE in mind.

SRON’s Transition Edge Sensors demonstrate potential as axion detectors
SRON scientists have demonstrated the potential of Transition Edge Sensors (TES) for detecting axions. These hypothetical particles have never been observed, perhaps due to the weak signals they produce. Evidence for their existence could point to the origin of dark matter.

New type of bolometer detector for far-infrared telescopes
To study how stars and planets are born we have to look at star cradles hidden in cool clouds of dust. Far-infrared telescopes are able to pierce through those clouds. Conventionally, niobium nitride bolometers are used as the detectors, despite their low operating temperature of 4 Kelvin (-269° Celsius). Now Yuner Gan (SRON/RUG), together with a team of scientists at SRON, TU Delft, Chalmers University and RUG, has developed a new type of bolometer, made of magnesium diboride, with an operating temperature of 20 Kelvin or above. This can significantly reduce the cost, complexity, weight and volume of the space instruments. Publication on 17 February in Journal of Applied Physics.

Far-infrared detector KID reaches highest possible sensitivity
Compared to most other wavelengths, astronomy has a blind spot in the area of far-infrared radiation. A far-infrared space telescope can only utilize its full sensitivity with an actively cooled mirror below 4 Kelvin (-269 ℃). Such a telescope doesn’t exist yet, which is why there has been little worldwide investment in the development of corresponding detectors. In 2004, SRON decided to break this vicious circle and invest in the development of Kinetic Inductance Detectors (KIDs). Now researchers from SRON and TU Delft have achieved the highest possible sensitivity, comparable to feeling the warmth of a candle on the Moon from Earth. Publication on September 6th in Astronomy & Astrophysics.

Far-infrared detector KID reaches highest possible sensitivity
Compared to most other wavelengths, astronomy has a blind spot in the area of far-infrared radiation. A far-infrared space telescope can only utilize its full sensitivity with an actively cooled mirror below 4 Kelvin (-269 ℃). Such a telescope doesn’t exist yet, which is why there has been little worldwide investment in the development of corresponding detectors. In 2004, SRON decided to break this vicious circle and invest in the development of Kinetic Inductance Detectors (KIDs). Now researchers from SRON and TU Delft have achieved the highest possible sensitivity, comparable to feeling the warmth of a candle on the Moon from Earth. Publication on September 6th in Astronomy & Astrophysics.
