Skip to content

To bring about breakthroughs in international space research

  • Home
  • Onderzoeksvragen
  • Pijlers
  • Missies
  • Over ons
  • Contact
Home
    Home

    SRON | Wetenschappelijk ruimteonderzoek Nederland

    To bring about breakthroughs in international space research

    Home
    • Onderzoeksvragen
    • Pijlers
      • Wetenschap
      • Technologie
      • Instrumentatie
      • Onze mensen
      • Impact
    • Missies
    • Over ons
    • Actueel
    • Contact
    • SRON Academy
    • Werken bij
    • Bezoek aan SRON
    Home
      • Onderzoeksvragen
        • Hoe ontrafelen we de fysica achter zwarte gaten?
        • Hoe kunnen we de zwakste exoplaneten waarnemen?
        • Waar worden broeikasgassen uitgestoten?
        • Hoe speciaal is de aarde in de context van het heelal?
        • Hoe ontstaan en groeien zwarte gaten?
        • Hoe beïnvloeden aerosolen het klimaat?
        • Hoe ontstaan sterren en planeten?
        • Hoe beïnvloedt klimaatverandering het leven op aarde?
      • Pijlers
        • Wetenschap
          • Aardobservatie
            • Methaan
            • Aerosolen en Wolken
            • CO2
            • Koolmonoxide
          • Astrofysica
            • Lage energie
            • Hoge energie
            • Exoplaneten
        • Technologie
        • Instrumentatie
          • Nanotechnologie
          • Cryogenica
          • Optica
          • Electronica
          • PA/QA kwaliteit
          • Mechanica / Realisatie
        • Onze mensen
        • Impact
      • Missies
        • Actief
          • ALMA
          • GUSTO
          • PACE
          • Sentinel-5p
          • SPEX airborne
          • XRISM
        • In ontwikkeling
          • ARIEL
          • LISA
          • Metop-SG A
        • Legacy
          • BeppoSAX
          • STO2
      • Over ons
        • Faciliteiten
        • Geschiedenis
      • Actueel
      • Contact
      • SRON Academy
      • Werken bij
      • Bezoek aan SRON
      • Privacy policy
      01/11/2023

      The impact of COVID-19 lockdowns on urban photochemistry as inferred from TROPOMI

      Movement restrictions were imposed in 2020 to mitigate the spread of Covid-19. These lock-down episodes provide a unique opportunity to study the sensitivity of urban photochemistry to temporary emission reductions and test air quality models. This study uses Tropospheric Monitoring Instrument (TROPOMI) nitrogen dioxide/carbon monoxide (NO2/CO) ratios in urban plumes in combination with an exponential fitting procedure to infer changes in the NOx lifetime (τNOx) during Covid-19 lock-downs in the cities of Denver, Chicago, New York, Riyadh, Wuhan and Sao Paulo compared with the year before.

      The strict lockdown policy in Wuhan led to a 65-80% reduction in NO2, compared to 30-50% in the other cities that were studied. In New York and Wuhan, CO concentration was reduced by 10-15%, whereas over Riyadh, Denver, Chicago, and Sao Paulo the CO background concentration increased by 2-5 ppb. τNOx has been derived for calm (0.0 < U (m/s) < 3.5) and windy (5.0 < U (m/s) < 8.5) days to study the influence of wind speed. We find reductions in τNOx during Covid-19 lockdowns in all six megacities during calm days. The largest change in τNOx during calm days is found for Sao-Paulo (31.8 ± 9.0%), whereas the smallest reduction is observed over Riyadh (22 ± 6.6%). During windy days, reductions in τNOx are observed during Covid-19 lockdowns in New York and Chicago. However, over Riyadh τNOx is almost similar for windy days during the Covid-19 lockdown and the year before.

      Ground-based measurements and the Chemistry Land-surface Atmosphere Soil Slab (CLASS) model have been used to validate the TROPOMI-derived results over Denver. CLASS simulates an enhancement of ozone (O3) by 4 ppb along with reductions in NO (38.7%), NO2 (25.7%) and CO (17.2%) during the Covid-19 lockdown in agreement with the ground-based measurements. In CLASS, decreased NOx emissions reduce the removal of OH in the NO2 + OH reaction, leading to higher OH concentrations and decreased τNOx . The reduction in τNOx inferred from TROPOMI (28 ± 9.0%) is in agreement with CLASS. These results indicate that TROPOMI derived NO2/CO ratios provide useful information about urban photochemistry and that changes in photochemical lifetimes can successfully be detected.

      SRON Leiden

      Leiden

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      SRON Groningen

      Groningen

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      • Onderzoeksvragen
      • Pijlers
        • Wetenschap
        • Technologie
        • Instrumentatie
        • Onze mensen
        • Impact
      • Missies
      • Over ons
      • Actueel
      • Contact
      SRON on bluesky SRON on Instagram SRON on LinkedIn

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      NWO-I

      SRON is onderdeel van de institutenorganisatie van NWO-I

      • Privacy policy
      Home

      What happens up there, starts down here.