Skip to content

To bring about breakthroughs in international space research

  • Home
  • Onderzoeksvragen
  • Pijlers
  • Missies
  • Over ons
  • Contact
Home
    Home

    SRON | Wetenschappelijk ruimteonderzoek Nederland

    To bring about breakthroughs in international space research

    Home
    • Onderzoeksvragen
    • Pijlers
      • Wetenschap
      • Technologie
      • Instrumentatie
      • Onze mensen
      • Impact
    • Missies
    • Over ons
    • Actueel
    • Contact
    • SRON Academy
    • Werken bij
    • Bezoek aan SRON
    Home
      • Onderzoeksvragen
        • Hoe ontrafelen we de fysica achter zwarte gaten?
        • Hoe kunnen we de zwakste exoplaneten waarnemen?
        • Waar worden broeikasgassen uitgestoten?
        • Hoe speciaal is de aarde in de context van het heelal?
        • Hoe ontstaan en groeien zwarte gaten?
        • Hoe beïnvloeden aerosolen het klimaat?
        • Hoe ontstaan sterren en planeten?
        • Hoe beïnvloedt klimaatverandering het leven op aarde?
      • Pijlers
        • Wetenschap
          • Aardobservatie
            • Methaan
            • Aerosolen en Wolken
            • CO2
            • Koolmonoxide
          • Astrofysica
            • Lage energie
            • Hoge energie
            • Exoplaneten
        • Technologie
        • Instrumentatie
          • Nanotechnologie
          • Cryogenica
          • Optica
          • Electronica
          • PA/QA kwaliteit
          • Mechanica / Realisatie
        • Onze mensen
        • Impact
      • Missies
        • Actief
          • ALMA
          • GUSTO
          • PACE
          • Sentinel-5p
          • SPEX airborne
          • XRISM
        • In ontwikkeling
          • ARIEL
          • LISA
          • Metop-SG A
        • Legacy
          • BeppoSAX
          • STO2
      • Over ons
        • Faciliteiten
        • Geschiedenis
      • Actueel
      • Contact
      • SRON Academy
      • Werken bij
      • Bezoek aan SRON
      • Privacy policy
      01/08/2021

      Reduced-cost construction of Jacobian matrices for high-resolution inversions of satellite observations of atmospheric composition

      Global high-resolution observations of atmospheric composition from satellites can greatly improve our understanding of surface emissions through inverse analyses. Variational inverse methods can optimize surface emissions at any resolution but do not readily quantify the error and information content of the posterior solution. The information content of satellite data may be much lower than its coverage would suggest because of failed retrievals, instrument noise, and error correlations that propagate through the inversion. Analytical solution of the inverse problem provides closed-form characterization of posterior error statistics and information content but requires the construction of the Jacobian matrix that relates emissions to atmospheric concentrations. Building the Jacobian matrix is computationally expensive at high resolution because it involves perturbing each emission element, typically individual grid cells, in the atmospheric transport model used as the forward model for the inversion. We propose and analyze two methods, reduced dimension and reduced rank, to construct the Jacobian matrix at greatly decreased computational cost while retaining information content. Both methods are two-step iterative procedures that begin from an initial native-resolution estimate of the Jacobian matrix constructed at no computational cost by assuming that atmospheric concentrations are most sensitive to local emissions. The reduced-dimension method uses this estimate to construct a Jacobian matrix on a multiscale grid that maintains a high resolution in areas with high information content and aggregates grid cells elsewhere. The reduced-rank method constructs the Jacobian matrix at native resolution by perturbing the leading patterns of information content given by the initial estimate. We demonstrate both methods in an analytical Bayesian inversion of Greenhouse Gases Observing Satellite (GOSAT) methane data with augmented information content over North America in July 2009. We show that both methods reproduce the results of the native-resolution inversion while achieving a factor of 4 improvement in computational performance. The reduced-dimension method produces an exact solution at a lower spatial resolution, while the reduced-rank method solves the inversion at native resolution in areas of high information content and defaults to the prior estimate elsewhere.

      SRON Leiden

      Leiden

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      SRON Groningen

      Groningen

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      • Onderzoeksvragen
      • Pijlers
        • Wetenschap
        • Technologie
        • Instrumentatie
        • Onze mensen
        • Impact
      • Missies
      • Over ons
      • Actueel
      • Contact
      SRON on bluesky SRON on Instagram SRON on LinkedIn

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      NWO-I

      SRON is onderdeel van de institutenorganisatie van NWO-I

      • Privacy policy
      Home

      What happens up there, starts down here.