Skip to content

To bring about breakthroughs in international space research

  • Home
  • Onderzoeksvragen
  • Pijlers
  • Missies
  • Over ons
  • Contact
Home
    Home

    SRON | Wetenschappelijk ruimteonderzoek Nederland

    To bring about breakthroughs in international space research

    Home
    • Onderzoeksvragen
    • Pijlers
      • Wetenschap
      • Technologie
      • Instrumentatie
      • Onze mensen
      • Impact
    • Missies
    • Over ons
    • Actueel
    • Contact
    • SRON Academy
    • Werken bij
    • Bezoek aan SRON
    Home
      • Onderzoeksvragen
        • Hoe ontrafelen we de fysica achter zwarte gaten?
        • Hoe kunnen we de zwakste exoplaneten waarnemen?
        • Waar worden broeikasgassen uitgestoten?
        • Hoe speciaal is de aarde in de context van het heelal?
        • Hoe ontstaan en groeien zwarte gaten?
        • Hoe beïnvloeden aerosolen het klimaat?
        • Hoe ontstaan sterren en planeten?
        • Hoe beïnvloedt klimaatverandering het leven op aarde?
      • Pijlers
        • Wetenschap
          • Aardobservatie
            • Methaan
            • Aerosolen en Wolken
            • CO2
            • Koolmonoxide
          • Astrofysica
            • Lage energie
            • Hoge energie
            • Exoplaneten
        • Technologie
        • Instrumentatie
          • Nanotechnologie
          • Cryogenica
          • Optica
          • Electronica
          • PA/QA kwaliteit
          • Mechanica / Realisatie
        • Onze mensen
        • Impact
      • Missies
        • Actief
          • ALMA
          • GUSTO
          • PACE
          • Sentinel-5p
          • SPEX airborne
          • XRISM
        • In ontwikkeling
          • ARIEL
          • LISA
          • Metop-SG A
        • Legacy
          • BeppoSAX
          • STO2
      • Over ons
        • Faciliteiten
        • Geschiedenis
      • Actueel
      • Contact
      • SRON Academy
      • Werken bij
      • Bezoek aan SRON
      • Privacy policy
      01/08/2023

      Assimilation of POLDER observations to estimate aerosol emissions

      We apply a local ensemble transform Kalman smoother (LETKS) in combination with the global aerosol-climate model ECHAM-HAM to estimate aerosol emissions from POLDER-3/PARASOL (POLarization and Directionality of the Earth’s Reflectances) observations for the year 2006. We assimilate aerosol optical depth at 550 mnm (AOD550), the Ångström exponent at 550 and 865 nm (AE550-865), and single-scattering albedo at 550 nm (SSA550) in order to improve modeled aerosol mass, size and absorption simultaneously. The new global aerosol emissions increase to 1419 Tg yr−1 (+28 %) for dust, 1850 Tg yr−1 (+75 %) for sea salt, 215 Tg yr−1 (+143 %) for organic aerosol and 13.3 Tg yr−1 (+75 %) for black carbon, while the sulfur dioxide emissions increase to 198 Tg yr−1 (+42 %) and the total deposition of sulfates to 293 Tg yr−1 (+39 %). Organic and black carbon emissions are much higher than their prior values from bottom-up inventories, with a stronger increase in biomass burning sources (+193 % and +90 %) than in anthropogenic sources (115 % and 70 %). The evaluation of the experiments with POLDER (assimilated) and AERONET as well as MODIS Dark Target (independent) observations shows a clear improvement compared with the ECHAM-HAM control run. Specifically based on AERONET, the global mean error in AOD550 improves from −0.094 to −0.006, while absorption aerosol optical depth at 550 nm (AAOD550) improves from −0.009 to −0.004 after the assimilation. A smaller improvement is also observed in the AE550-865 mean absolute error (from 0.428 to 0.393), with a considerably higher improvement over isolated island sites at the ocean. The new dust emissions are closer to the ensemble median of AEROCOM I, AEROCOM III and CMIP5 as well as some of the previous assimilation studies. The new sea salt emissions have become closer to the reported emissions from previous studies. Indications of a missing fraction of coarse dust and sea salt particles are discussed. The biomass burning changes (based on POLDER) can be used as alternative biomass burning scaling factors for the Global Fire Assimilation System (GFAS) inventory distinctively estimated for organic carbon (2.93) and black carbon (1.90) instead of the recommended scaling of 3.4 (Kaiser et al., 2012). The estimated emissions are highly sensitive to the relative humidity due to aerosol water uptake, especially in the case of sulfates. We found that ECHAM-HAM, like most of the global climate models (GCMs) that participated in AEROCOM and CMIP6, overestimated the relative humidity compared with ERA5 and as a result the water uptake by aerosols, assuming the kappa values are not underestimated. If we use the ERA5 relative humidity, sulfate emissions must be further increased, as modeled sulfate AOD is lowered. Specifically, over East Asia, the lower AOD can be attributed to the underestimated precipitation and the lack of simulated nitrates in the model.

      SRON Leiden

      Leiden

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      SRON Groningen

      Groningen

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      • Onderzoeksvragen
      • Pijlers
        • Wetenschap
        • Technologie
        • Instrumentatie
        • Onze mensen
        • Impact
      • Missies
      • Over ons
      • Actueel
      • Contact
      SRON on bluesky SRON on Instagram SRON on LinkedIn

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      NWO-I

      SRON is onderdeel van de institutenorganisatie van NWO-I

      • Privacy policy
      Home

      What happens up there, starts down here.