Skip to content

To bring about breakthroughs in international space research

  • Home
  • Onderzoeksvragen
  • Pijlers
  • Missies
  • Over ons
  • Contact
Home
    Home

    SRON | Wetenschappelijk ruimteonderzoek Nederland

    To bring about breakthroughs in international space research

    Home
    • Onderzoeksvragen
    • Pijlers
      • Wetenschap
      • Technologie
      • Instrumentatie
      • Onze mensen
      • Impact
    • Missies
    • Over ons
    • Actueel
    • Contact
    • SRON Academy
    • Werken bij
    • Bezoek aan SRON
    Home
      • Onderzoeksvragen
        • Hoe ontrafelen we de fysica achter zwarte gaten?
        • Hoe kunnen we de zwakste exoplaneten waarnemen?
        • Waar worden broeikasgassen uitgestoten?
        • Hoe speciaal is de aarde in de context van het heelal?
        • Hoe ontstaan en groeien zwarte gaten?
        • Hoe beïnvloeden aerosolen het klimaat?
        • Hoe ontstaan sterren en planeten?
        • Hoe beïnvloedt klimaatverandering het leven op aarde?
      • Pijlers
        • Wetenschap
          • Aardobservatie
            • Methaan
            • Aerosolen en Wolken
            • CO2
            • Koolmonoxide
          • Astrofysica
            • Lage energie
            • Hoge energie
            • Exoplaneten
        • Technologie
        • Instrumentatie
          • Nanotechnologie
          • Cryogenica
          • Optica
          • Electronica
          • PA/QA kwaliteit
          • Mechanica / Realisatie
        • Onze mensen
        • Impact
      • Missies
        • Actief
          • ALMA
          • GUSTO
          • PACE
          • Sentinel-5p
          • SPEX airborne
          • XRISM
        • In ontwikkeling
          • ARIEL
          • LISA
          • Metop-SG A
        • Legacy
          • BeppoSAX
          • STO2
      • Over ons
        • Faciliteiten
        • Geschiedenis
      • Actueel
      • Contact
      • SRON Academy
      • Werken bij
      • Bezoek aan SRON
      • Privacy policy
      01/11/2021

      Application of Radon Transform to Multi-Angle Measurements Made by the Research Scanning Polarimeter: A New Approach to Cloud Tomography. Part I: Theory and Tests on Simulated Data

      The Research Scanning Polarimeter (RSP) is an airborne along-track scanner measuring the polarized and total reflectances in 9 spectral channels. The RSP was a prototype for the Aerosol Polarimetery Sensor (APS) launched on-board the NASA Glory satellite. Currently the retrieval algorithms developed for the RSP are being adopted for the measurements of the space-borne polarimeters on the upcoming NASA’s Plankton, Aerosol, Cloud Ocean Ecosystem (PACE) satellite mission. The RSP’s uniquely high angular resolution coupled with the high frequency of measurements allows for characterization of liquid water cloud droplet sizes using the polarized rainbow structure. It also provides geometric constraints on the cumulus cloud’s 2D cross section yielding the cloud’s geometric shape estimates. In this study we further build on the latter technique to develop a new tomographic approach to retrieval of cloud internal structure from remote sensing measurements. While tomography in the strict definition is a technique based on active measurements yielding a tomogram (directional optical thickness as a function of angle and offset of the view ray), we developed a “semi-tomographic” approach in which tomogram of the cloud is estimated from passive observations instead of being measured directly. This tomogram is then converted into 2D spatial distribution of the extinction coefficient using inverse Radon transform (filtered backprojection) which is the standard tomographic procedure used e.g., in medical CT scans. This algorithm is computationally inexpensive compared to techniques relying on highly-multi-dimensional least-square fitting; it does not require iterative 3D RT simulations. The resulting extinction distribution is defined up to an unknown constant factor, so we discuss the ways to calibrate it using additional independent measurements. In the next step we use the profile of the droplet size distribution parameters from the cloud’s side (derived by fitting the polarized rainbows) to convert the 2D extinction distribution into that of the droplet number concentration. We illustrate and validate the proposed technique using 3D-RT-simulated RSP observations of a LES-generated Cu cloud. Quantitative comparisons between the retrieved and the original optical and microphysical parameters are presented.

      SRON Leiden

      Leiden

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      SRON Groningen

      Groningen

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      • Onderzoeksvragen
      • Pijlers
        • Wetenschap
        • Technologie
        • Instrumentatie
        • Onze mensen
        • Impact
      • Missies
      • Over ons
      • Actueel
      • Contact
      SRON on bluesky SRON on Instagram SRON on LinkedIn

      Niels Bohrweg 4
      2333 CA Leiden
      The Netherlands
      +31 (0)88 777 56 00

      Landleven 12
      9747 AD Groningen
      The Netherlands
      +31 (0)50 363 40 74

      NWO-I

      SRON is onderdeel van de institutenorganisatie van NWO-I

      • Privacy policy
      Home

      What happens up there, starts down here.