SRON Netherlands Institute for Space Research

Our mission is to bring about breakthroughs in international space research

SEE MORE

Our mission is to bring about breakthroughs in international space research

SEE MORE

SRON Netherlands Institute for Space Research

SRON HAS MOVED TO NEW HEADQUARTERS IN LEIDEN


LATEST NEWS

Onze telescopen hebben nog nooit een zwart gat waargenomen zwaarder dan twintig zonsmassa’s. Toch weten we dat ze bestaan, getuige de tientallen detecties van zwaartekrachtsgolfdetectoren. Een team van astronomen onder leiding van Peter Jonker (SRON/Radboud) heeft nu ontdekt dat telescopen een bias hebben ten nadele van zware zwarte gaten, waarmee ze de tegenstrijdigheid verklaren. Publicatie in The Astrophysical Journal. Masses_of_Dead_Stars_LIGO_Virgo.png

In 2015 registreerde de zwaartekrachtsgolvendetector LIGO voor het eerst een zwaartekrachtsgolf, afkomstig van twee zwarte gaten die met hun gewicht van tientallen zonsmassa’s op elkaar knalden en het heelal deden schudden op haar grondvesten. Zo ook de sterrenkunde, want weinig astronomen hadden verwacht dat zulke zware stellaire zwarte gaten überhaupt bestaan. We hadden ze namelijk nog nooit waargenomen met onze conventionele telescopen, terwijl er al wel zo’n twintig stellaire zwarte gaten geteld waren met bekende massa. Ondertussen zijn er rond de vijftig zwaartekrachtsgolven waargenomen—ook door de Europese Virgo-detector—in de meeste gevallen opnieuw afkomstig van zware stellaire zwarte gaten. Met telescopen staat daarvoor de teller nog steeds op nul.

Deze discrepantie is deels te verklaren doordat we via zwaartekrachtsgolven een groter volume van het heelal kunnen afspeuren. LIGO-Virgo kan de zwaardere zwarte gaten makkelijker zien omdat ze sterkere golven produceren, waardoor zijn vele ontdekkingen niet persé uitsluiten dat het toch om zeldzame objecten gaat. Maar dan nog zou je tenminste een paar zware zwarte gaten verwachten binnen het bereik van onze telescopen. Telescopen kunnen zwarte gaten zien als ze worden begeleid door een ster. Wanneer het zwarte gat hapjes materiaal van de ster afsnoept zendt hij namelijk elektromagnetische straling uit. De baan van de ster verraadt vervolgens de massa.

Een team van astronomen onder leiding van Peter Jonker (SRON/Radboud) heeft nu uitgevonden dat telescopen een bias hebben ten nadele van zware zwarte gaten. Zware zwarte gaten blijken dus wel degelijk zichtbaar, via een begeleidende ster, alleen de omstandigheden zijn er niet naar om ze met onze huidige telescopen te zien. De onderzoekers hebben een theorie ontwikkeld die aansluit op de telescoopwaarnemingen van nul zware zwarte gaten. De zware exemplaren ontstaan uit sterren die imploderen in plaats van exploderen. Ze blijven daardoor in het vlak van de Melkweg zitten, gehuld in stof. Lichtere zwarte gaten ontstaan wel uit een supernova-explosie en krijgen daarbij een recoil kick die ze uit het vlak slingert, weg van het stof dat onze telescopen het zicht ontneemt.
Bovenop die bias, zo redeneren Jonker en collega’s, zijn de voorlopers van zware zwarte gaten zo groot dat een begeleidende ster per definitie ver weg staat, wat het afsnoepen van materie bemoeilijkt. Dat maakt het lastiger voor telescopen om ze te vinden.

Met de aanstaande lancering van de James Webb ruimtetelescoop (JWST) op 18 december kunnen de onderzoekers hun theorie al snel testen. De JWST zal namelijk wel in staat zijn om zware zwarte gaten te bestuderen omdat hij via infrarood licht dwars door het stof in de melkwegschijf kijkt. Bovendien zweeft de JWST in de ruimte, zodat hij geen last heeft van infraroodstraling die door de atmosfeer wordt uitgezonden.

Onderschrift header image: Via elektromagnetische (EM) straling hebben we alleen zwarte gaten lichter dan twintig zonsmassa’s ontdekt (paars). Dit zijn altijd zwarte gaten met een ster als begeleider, omdat een zwart gat begeleid door een ander zwart gat niet zichtbaar is. Via zwaartekrachtsgolven (LIGO-Virgo) hebben we sinds 2015 al tientallen zware zwarte gaten ontdekt (blauw). Deze discrepantie blijkt nu te liggen aan een bias van EM-telescopen ten nadele van zware zwarte gaten. Overigens heeft LIGO-Virgo een bias de andere kant op, omdat zwaardere zwarte gaten sterkere golven produceren. Toch ziet LIGO-Virgo niet exclusief zware zwarte gaten. De toekomstige JWST-telescoop zou ook gevoelig genoeg moeten zijn om af en toe de EM-bias te doorbreken, zodat EM-telescopen niet meer exclusief lichte zwarte gaten waarnemen.

Publicatie

Peter G. Jonker, Karamveer Kaur, Nicholas Stone, and Manuel A. P. Torres, 'The observed mass distribution of Galactic black hole LMXBs is biased against massive black holes', The Astrophysical Journal



Lack of massive black holes in telescope data is caused by bias

Our telescopes have never detected a black hole more massive than twenty times the mass of the Sun. Nevertheless, we now know of their existence as dozens of those black holes have recently been “heard” to merge via gravitational wave radiation. A team of astronomers led by Peter Jonker (SRON/Radboud) has now discovered that these seemingly disparate results can be explained by biases against massive black holes in conventional telescope observations.

Masses_of_Dead_Stars_LIGO_Virgo.png

In 2015 the LIGO facilities detected gravitational waves for the first time. They were emitted by two massive black holes of several tens the mass of the Sun in the process of merging. This discovery shook the Universe, and also the astronomical community, because few astronomers had predicted that such massive black holes would exist, let alone that they could merge. Before the gravitational wave detections, our conventional telescopes had found proof for the existence of stellar mass black holes in about 20 cases. However, none had ever been found that were as massive as those now observed through gravitational wave radiation emitted during merger. By now about 50 of such merging black hole pairs have been detected, including by the European Virgo detector, again in most cases involving massive black holes. Telescopes still have not found such black holes.

This disparity can be partially explained by the larger volume of the Universe that is being probed by the gravitational wave detectors. LIGO-Virgo can find such more massive black holes more easily because their waves are stronger relative to those from lighter black holes, implying that these could be rare, but loud events. But zero detections of such black holes using telescopes? Black holes, or at least their close environment, lights up when they slowly devour a companion star. Through measurements of the orbital motion of the hapless star, the mass of the black hole can be determined.

A team of astronomers led by Peter Jonker (Radboud University/SRON) realized that telescope observations are biased against detecting massive black holes. Such massive black holes can, in principle, be observed if they eat mass from a companion star. However, the circumstances for those observations have been too difficult in practice, explaining the lack of detections of massive black holes through telescope observations. The largest black holes are formed through imploding massive stars, instead of exploding massive stars (“supernova”). Formed through an implosion, these massive black holes stay put in the same place where their predecessor (the massive star) was born, the plane of the Milky Way galaxy. However, that means that they remain shrouded in dust and gas. Their lighter black hole sisters and brothers, born out of massive stars through supernova explosions, experience a kick ejecting them out of the plane of the Milky Way, making them more readily observable for our telescopes measuring their mass.

Aggravating this bias, as realized by Jonker and colleagues, is that any companion star of a massive black hole must orbit at a relatively large distance, making it rarer for a companion star to be devoured in an observable frenzy. Such episodes are what gives away the existence and location of black holes. Thus, the more massive black holes will more rarely give away their location.

The imminent launch of the James Webb space telescope (JWST) on December 18 will allow astronomers to test these ideas. JWST will for the first time allow the measurement of the mass of several systems of candidate black holes in the plane of the Milky Way. JWST will be sensitive to infrared light, and such light is much less affected by dust and gas than is the optical light typically used by ground-based telescopes. Furthermore, the large size of JWST, and its advantageous position in space, allows JWST to pick out the right star to study among the millions of stars in the plane of the Milky Way. Finally, being above the Earth’s atmosphere, JWST will not be hindered by the infrared light emitted by the atmosphere.

Caption header image: Measurements using electromagnetic (EM) radiation only revealed stellar black holes less massive than about 20 solar masses (purple circles). These black holes all have a companion star that is losing mass to the black hole. This gas stream reveals the existence of the black hole and detailed study of the motion of the companion allows for the mass of the black hole to be measured. LIGO/Virgo measurements of gravitational wave radiation emitted when two black holes merge have allowed the masses of several tens of black holes to be measured since 2015 (blue circles). These black holes are generally more massive than those found through EM radiation. We know now that the lack of massive black holes studied through EM techniques can be caused by a bias against finding and studying the massive black holes. Incidentally, the LIGO/Virgo measurements favor the detection of massive black holes because the signal of their mergers is louder and thus can be detected from systems further out in the Universe compared with the signal of merging lower mass black holes. Nevertheless, LIGO/Virgo is also detecting lower-mass merging black holes. In the near- future the JWST telescope will enable to remove the EM bias. Due to its sensitivity astronomers will be able to measure the mass of black hole candidate systems located at places where the most massive black holes are thought to reside.

Publicatie

Peter G. Jonker, Karamveer Kaur, Nicholas Stone, and Manuel A. P. Torres, 'The observed mass distribution of Galactic black hole LMXBs is biased against massive black holes', The Astrophysical Journal

RESEARCH

SRON has four programme lines, Astrophysics, ExoplanetsEarth, and Technology, with science groups attached, and two expertise groups, Instrument science and Engineering.

ASTROPHYSICS

The Astrophysics programme at SRON is dedicated to unraveling the history of the universe, from the first stars and black holes to large-scale structure.

Read more

EXOPLANETS

The Exoplanets programme is dedicated to atmospheres of planets beyond our solar system and is an in-between of SRON's Astrophysics and Earth programmes.

Read more

EARTH

The Earth programme is aimed at the climate and air quality of planet Earth, with focus on the global carbon cycle and aerosols.

Read more

ENGINEERING

The Engineering group covers SRON's skills and know-how with regard to product assurance, quality assurance, configuration control, design engineering – electronic & mechanical – and parts procurement. It is an expertise group that provides resources for all SRON instrument projects.

Read more

INSTRUMENT SCIENCE

The Instrument science group covers SRON's skills and know-how with regard to instrument physics, system engineering (up to full-instrument level) and project management. It is an expertise group that provides resources for all SRON instrument projects.

Read more

TECHNOLOGY

The Technology programme is SRON's backbone for the development of enabling technology.

Read more

Annual report

New housing

Canon 50 jaar

SRON’s mission is to bring about breakthroughs in international space research 

Therefore the institute develops pioneering technology and advanced space instruments, and uses them to pursue fundamental astrophysical research, Earth science and exoplanetary research. As national expertise institute SRON gives counsel to the Dutch government and coordinates - from a science standpoint - national contributions to international space missions. SRON stimulates the implementation of space science in our society.



SCROLL TO TOP