NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

Leven gedijt bij een stabiele temperatuur. Die wordt op Aarde gewaarborgd door de koolstofcyclus. Wetenschappers van SRON, VU en de RUG hebben nu een model ontwikkeld dat voor exoplaneten voorspelt of er een koolstofcyclus aanwezig is, mits de massa, grootte van de kern en hoeveelheid CO2 bekend zijn. Publicatie in Astronomy & Astrophysics op 3 mei.

earthlikeExoplanetImpression.jpg

In de zoektocht naar leven op planeten buiten ons Zonnestelsel hebben astronomen niet de luxe om foto's te maken en te kijken wat er zich daar zoal afspeelt. Onze telescopen halen daarvoor bij lange na niet de vereist ruimtelijke resolutie; exoplaneten zijn simpelweg te klein en te ver weg. De planeetatmosfeer laat echter een schat aan informatie achter in het sterlicht dat erdoorheen schiet, in de vorm van een spectrum. De spectrale resolutie van onze telescopen is wel ruim voldoende om die te ontrafelen. Zo komen we alsnog te weten welke stoffen aanwezig zijn in de atmosferen van exoplaneten. In de zoektocht naar leven is CO2 daarbij een erg interessante, vanwege de dempende rol van de koolstofcyclus bij opwarming en afkoeling. Onze aarde heeft dankzij die cyclus altijd een leefbare temperatuur gehouden, terwijl de Zon de afgelopen miljarden jaren 20% helderder is geworden.

Wetenschappers van SRON, RUG en de VU hebben nu een model ontwikkeld dat voor een exoplaneet zijn massa en de grootte van zijn kern koppelt aan de hoeveelheid CO2 in zijn atmosfeer, mits er een koolstofcyclus is. Dus als we met een telescoop die drie factoren te weten komen, vertelt het model ons of de betreffende exoplaneet een koolstofcyclus heeft. De massa en kern van een planeet zijn een factor van belang omdat ze een sterk effect hebben op de beweging van aardplaten, die een sleutelrol spelen in de koolstofcyclus.

De koolstofcyclus heeft een dempende invloed op temperatuurveranderingen doordat een planeet meer CO2 opneemt als het warmer wordt, wat leidt tot minder broeikaseffect.* Bij afkoeling gebeurt het omgekeerde. De eerste stap in de cyclus is verwering, waarbij rotsen reageren met CO2 en regenwater tot bicarbonaat (HCO3). Dit wordt op de zeebodem afgezet als carbonaatgesteente (CaCO3), terwijl een klein deel van de koolstof als restproduct oplost in het zeewater. Bewegende aardplaten vervoeren het carbonaatgesteente vervolgens naar de mantel. Vulkanen brengen de CO2 die uit dat gesteente komt daarna weer terug in de atmosfeer. 'We weten niet of er überhaupt andere planeten zijn met aardplaten en een koolstofcyclus,' zegt Mark Oosterloo, eerste auteur van het artikel. 'In ons Zonnestelsel is de Aarde de enige planeet waar we een koolstofcyclus aantreffen. We hopen dat ons model kan bijdragen aan de ontdekking van een exoplaneet met koolstofcyclus, en dus mogelijk leven.'

*Dit proces werkt veel te langzaam om de menselijke CO2-uitstoot van de afgelopen eeuwen bij te benen.

Publicatie

M. Oosterloo, D. Höning, I. E. E. Kamp, and F. F. S. van der Tak, 'The role of planetary interior in the long-term evolution of atmospheric CO2 on Earth-like exoplanets', Astronomy & Astrophysics

Caption header image: Artist impression van een aardachtige exoplaneet. Credit: NASA



New model can predict carbon cycle presence on exoplanets

Life thrives at stable temperatures. On Earth, this is facilitated by the carbon cycle. Scientists at SRON, VU and RUG have now developed a model that predicts whether there is a carbon cycle present on exoplanets, provided the mass, core size and amount of CO2 are known. Publication in Astronomy & Astrophysics on May 3rd.

earthlikeExoplanetImpression.jpg

In the search for life on planets outside our Solar System, astronomers don't have the luxury to take pictures and see what is going on out there. Our telescopes have nowhere near the required spatial resolution for this; exoplanets are simply too small and too far away. However, a planet's atmosphere imprints a wealth of information in the starlight that shoots through it, in the form of a spectrum. The spectral resolution of our telescopes is indeed more than enough to unravel this. That way we find out what materials are present in exoplanet atmospheres. In the search for life, CO2 is a very interesting one because of the dampening effect of the carbon cycle on warming and cooling. Thanks to this cycle, our Earth has always maintained a habitable temperature while the Sun has become 20% brighter over the past billions of years.

Scientists at SRON, VU and RUG have now developed a model that couples an exoplanet's mass and core size to the amount of CO2 in its atmosphere, provided there is a carbon cycle. So when we quantify those three factors for an exoplanet using a telescope, the model tells us if it has a carbon cycle. The mass and core size of a planet are a factor because of their strong effect on plate tectonics, which plays a key role in the carbon cycle.

The carbon cycle has a dampening influence on temperature changes because a planet absorbs more CO2 when it gets warmer, leading to less greenhouse effect.* When it gets cooler, the opposite happens. The first step in the cycle is weathering: rocks react with CO2 and rainwater to form bicarbonate (HCO3). This is deposited onto the seabed as sedimentary rock (CaCO3), while a small part of the carbon dissolves as a residual product in the seawater. Plate tectonics then transport the sedimentary rock to the Earth's mantle. Next, volcanoes release the CO2 from the sedimentary rock back into the atmosphere. 'We don't know if there are any other planets at all with plate tectonics and a carbon cycle,' says Mark Oosterloo, lead author of the paper. 'In our Solar System, the Earth is the only planet where we have found a carbon cycle. We hope that our model can contribute to the discovery of an exoplanet with a carbon cycle, and therefore possibly life.'

*This process happens much too slow to keep up with anthropogenic CO2 emissions over the past few centuries.

Publication

M. Oosterloo, D. Höning, I. E. E. Kamp, and F. F. S. van der Tak, 'The role of planetary interior in the long-term evolution of atmospheric CO2 on Earth-like exoplanets', Astronomy & Astrophysics

Caption header image: Artist impression of an earth-like exoplanet. Credit: NASA



SCROLL TO TOP