NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

NEWS & MEDIA

NEWS & MEDIA

PUBLIC OUTREACH

Astronomers have found water vapour around the dwarf planet Ceres with the Molecule Hunter HIFI. It is the first unambiguous detection of water vapour around an object in the asteroid belt and it supports the theory that the water on Earth originates from a bombardment of comets and asteroids. The research results will appear 23 January in Nature.

ceres_with_graph_F.jpg
Dwarf planet Ceres is located in the asteroid belt, between the orbits of Mars and Jupiter. Observations by ESA’s Herschel space observatory between 2011 and 2013 find that the dwarf planet has a thin water-vapour atmosphere. It is the first unambiguous detection of water vapour around an object in the asteroid belt. The inset shows the water absorption signal detected by Herschel on 11 October 2012 (ESA/ATG medialab/Küppers et al).
With a diameter of 950 km, Ceres is the largest object in the asteroid belt, which lies between the orbits of Mars and Jupiter. But unlike most asteroids, Ceres is almost spherical and belongs to the category of ‘dwarf planets’, which also includes Pluto.  It is thought that Ceres is layered, perhaps with a rocky core and an icy outer mantle. This is important, because the water-ice content of the asteroid belt has significant implications for our understanding of the evolution of the Solar System.

When the Solar System formed 4.6 billion years ago, it was too hot in its central regions for water to have condensed at the locations of the innermost planets, Mercury, Venus, Earth and Mars. Instead, it is thought that water was delivered to these planets later during a prolonged period of intense asteroid and comet impacts around 3.9 billion years ago.

While comets are well known to contain water ice, what about asteroids? Water in the asteroid belt has been hinted at through the observation of comet-like activity around some asteroids – the so-called Main Belt Comet family – but no definitive detection of water vapour has ever been made.

HIFI                                                                                                         
Now, using the HIFI instrument on Herschel to study Ceres, scientists have collected data that point to water vapour being emitted from the icy world’s surface. “This is the first time that water has been detected in the asteroid belt, and provides proof that Ceres has an icy surface and an atmosphere,” says Michael Küppers of ESA’s European Space Astronomy Centre in Spain, lead author of the paper published in Nature.

Although Herschel was not able to make a resolved image of Ceres, the astronomers were able to derive the distribution of water sources on the surface by observing variations in the water signal during the dwarf planet’s 9-hour rotation period. Almost all of the water vapour was seen to be coming from just two spots on the surface. “We estimate that approximately 6 kg of water vapour is being produced per second, requiring only a tiny fraction of Ceres to be covered by water ice, which links nicely to the two localised surface features we have observed,” says Laurence O’Rourke, Principal Investigator for the Herschel asteroid and comet observation programme called MACH-11, and second author on the Nature paper.

The most straightforward explanation of the water vapour production is through sublimation, whereby ice is warmed and transforms directly into gas, dragging the surface dust with it, and thus exposing fresh ice underneath to sustain the process. Comets work in this fashion. The two emitting regions are about 5% darker than the average on Ceres. Able to absorb more sunlight, they are then likely the warmest regions, resulting in a more efficient sublimation of small reservoirs of water ice. An alternative possibility is that geysers or icy volcanoes – cryovolcanism – play a role in the dwarf planet’s activity.

“Herschel’s discovery of water vapour outgassing from Ceres gives us new information on how water is distributed in the Solar System. Since Ceres constitutes about one fifth of the total mass of asteroid belt, this finding is important not only for the study of small Solar System bodies in general, but also for learning more about the origin of water on Earth,” says Göran Pilbratt, ESA’s Herschel Project Scientist.

More information
The article Localised sources of water vapour on dwarf planet (1) Ceres, M. Küppers et al., appears 23 January in Nature. The research results are based on observations with Herschel/HIFI, between November 2011 en march 2013. The observations were part of the MACH-11-programme (Measurements of 11 Asteroids and Comets with Herschel).

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. HIFI was built and developed by a consortium led by SRON Netherlands Institute for Space Research, with important contributions from TNO and small and medium-sized enterprises like Mecon. Herschel/HIFI's obserations came to an end April 2013. According to plan the liquid helium - used to cool the instruments - had run out by that time.



SCROLL TO TOP