SRON Netherlands Institute for Space Research

Our mission is to bring about breakthroughs in international space research

SEE MORE

SRON Netherlands Institute for Space Research

SRON Netherlands Institute for Space Research

SRON Netherlands Institute for Space Research

Our mission is to bring about breakthroughs in international space research

SEE MORE

SRON Netherlands Institute for Space Research

LATEST NEWS

An international team of astronomers has accurately measured the distance from Earth to a black hole for the first time. Without needing to rely on mathematical models the astronomers came up with a distance of 7800 light years, much closer than had been assumed until now. The researchers achieved this breakthrough by measuring the radio emissions from the black hole and its associated dying star. Due to the much lower error margin (<6%), astronomers can now gain a better picture of how black holes evolve, for example. Moreover, an exact distance is important for measurements of the black hole´s spin.

Astronomical distances are most easily measured using the so-called trigonometric parallax, in which astronomers make use of the annual shift in the star’s position as a consequence of the earth’s orbit around the sun (parallax shift). Peter Jonker from SRON Netherlands Institute for Space Research and his colleagues have now applied this method for the first time to a relatively near black hole and its associated star, V404 Cygni, in the Cygnus constellation. The outermost layers of the star are being drawn into the black hole. This gas first of all accumulates in a plasma disc around the black hole before it disappears into it, a process during which a lot of X-rays and radio waves are emitted. Jonker and his colleagues could accurately measure the parallax shift of this binary system using a combination of telescopes spread throughout the world, the High Sensitivity Array.

blackhole.jpg
An international team of astronomers has accurately measured the distance from Earth to a black hole for the first time

Using this approach the astronomers could establish that the black hole of V404 Cygni is 7800 light years from Earth, slightly more than half the distance that was previously assumed. The researchers believe that the previous overestimation of this distance was due to an underestimation of the absorption and diffraction of interstellar dust that can give an error margin of about 50 percent. The error margin of the new measurement is less than 6 percent.

Supernova
From their measurements the researchers could work out that the black hole developed from a supernova explosion, and that it moves through space at a rate of about 40 km per second. The binary-star system acquired this velocity during the explosion. Jonker: 'With this information we have gained a better idea about how back holes evolve. For example, we hope to be able to answer the question as to whether there is a difference between black holes that evolve directly from the collapse of a star without a supernova and black holes that evolve via a supernova and a temporary intermediate star, a proto-neutron star. We expect that the black holes in the last group can get a kick. Black holes formed in this way could then move through space faster.' Interestingly, V404 Cygni belongs to this second group but has not received a big kick. Fellow researcher James Miller-Jones: 'We are now trying to apply the same measurement method to several other black holes.'

Publication
The authors published their research results on 1 December in The Astrophysical Journal, under the title The first accurate parallax distance to a black hole. In the same week the research results appeared as a research highlight in Nature. The authors are:
J.C.A. Miller-Jones (NRAO), P.G. Jonker (SRON), V. Dhawan (NRAO), W. Brisken (NRAO), M.P. Rupen (NRAO), G. Nelemans (Radboud University Nijmegen) and E. Gallo (MIT).

 

 

RESEARCH

SRON has four programme lines, Astrophysics, ExoplanetsEarth, and Technology, with science groups attached, and two expertise groups, Instrument science and Engineering.

ASTROPHYSICS

The Astrophysics programme at SRON is dedicated to unraveling the history of the universe, from the first stars and black holes to large-scale structure.

Read more

EXOPLANETS

The Exoplanets programme is dedicated to atmospheres of planets beyond our solar system and is an in-between of SRON's Astrophysics and Earth programmes.

Read more

EARTH

The Earth programme is aimed at the climate and air quality of planet Earth, with focus on the global carbon cycle and aerosols.

Read more

ENGINEERING

The Engineering group covers SRON's skills and know-how with regard to product assurance, quality assurance, configuration control, design engineering – electronic & mechanical – and parts procurement. It is an expertise group that provides resources for all SRON instrument projects.

Read more

INSTRUMENT SCIENCE

The Instrument science group covers SRON's skills and know-how with regard to instrument physics, system engineering (up to full-instrument level) and project management. It is an expertise group that provides resources for all SRON instrument projects.

Read more

TECHNOLOGY

The Technology programme is SRON's backbone for the development of enabling technology.

Read more

Annual report

New housing

Canon 50 jaar

SRON’s mission is to bring about breakthroughs in international space research 

Therefore the institute develops pioneering technology and advanced space instruments, and uses them to pursue fundamental astrophysical research, Earth science and exoplanetary research. As national expertise institute SRON gives counsel to the Dutch government and coordinates - from a science standpoint - national contributions to international space missions. SRON stimulates the implementation of space science in our society.



SCROLL TO TOP