RemoTAP

The Remote sensing of Trace gas and Aerosol Products (RemoTAP) algorithm is a flexible algorithm that can be used for retrieval of optical and microphysical aerosol properties from Multi-Angle Polarimeter (MAP) measurements, retrieval of aerosol properties and trace gas columns (e.g. CO2, CH4) from spectroscopic measurements, or for joint retrievals using multiple instruments. RemoTAP is based on iterative fitting a linearized radiative transfer model to the measurements of intensity and polarization of light reflected by the Earth atmosphere and surface. It has large flexibility in the definition of parameters to be retrieved and allows retrievals over land, ocean, and clouds. The RemoTAP software has strong heritage in application to POLDER-3/PARASOL measurements, airborne measurements of the Research Scanning Polarimeter (RSP), SPEX airborne, and airMSPI. RemoTAP is also planned to be used for operational processing of the SpexOne/PACE data. RemoTAP data products from PARASOL have been used for data assimilation / inverse modeling, quantification of the Direct Radiative Effect of Aerosols (DREA), and the Radiative Forcing due to aerosol-cloud interactions (RFaci).

RemoTAP references

Fu, G., and Hasekamp, O. (2018). Retrieval of Aerosol Microphysical and Optical Properties over Land Using a Multimode Approach. Atmos. Meas. Tech. 11, 6627–6650. doi:10.5194/amt-11-6627-2018

Fu, G., Hasekamp, O., Rietjens, J., Smit, M., Di Noia, A., Cairns, B., et al. (2020). Aerosol Retrievals from Different Polarimeters during the Acepol Campaign Using a Common Retrieval Algorithm. Atmos. Meas. Tech. 13, 553–573. doi:10.5194/amt-13-553-2020

Hasekamp, O. P., Gryspeerdt, E., and Quaas, J. (2019). Analysis of Polarimetric Satellite Measurements Suggests Stronger Cooling Due to Aerosol-Cloud Interactions. Nat. Commun. 10, 5405–5407. doi:10.1038/s41467-019-13372-2

Hasekamp, O. P., and Butz, A. (2008). Efficient Calculation of Intensity and Polarization Spectra in Vertically Inhomogeneous Scattering and Absorbing Atmospheres. J. Geophys. Res. Atmos. 113. doi:10.1029/2008jd010379

Hasekamp, O. P., Fu, G., Rusli, S. P., Wu, L., Di Noia, A., Brugh, J. a. d., et al. (2019a). Aerosol Measurements by Spexone on the NASA PACE Mission: Expected Retrieval Capabilities. J. Quantitative Spectrosc. Radiat. Transf. 227, 170–184. doi:10.1016/j.jqsrt.2019.02.006

Hasekamp, O. P., Litvinov, P., and Butz, A. (2011). Aerosol Properties over the Ocean from Parasol Multiangle Photopolarimetric Measurements. J. Geophys. Res. Atmos. 116. doi:10.1029/2010jd015469

Lu Sha, Landgraf Jochen, Fu Guangliang, van Diedenhoven Bastiaan, Wu Lianghai, Rusli Stephanie P., Hasekamp Otto P. (2022), Simultaneous Retrieval of Trace Gases, Aerosols, and Cirrus Using RemoTAP—The Global Orbit Ensemble Study for the CO2M Mission, Frontiers in Remote Sensing , 3, DOI=10.3389/frsen.2022.914378

Schepers, D., aan de Brugh, J. M. J., Hahne, P., Butz, A., Hasekamp, O. P., and Landgraf, J. (2014). LINTRAN v2.0: A Linearised Vector Radiative Transfer Model for Efficient Simulation of Satellite-Born Nadir-Viewing Reflection Measurements of Cloudy Atmospheres. J. Quantitative Spectrosc. Radiat. Transf. 149, 347–359. doi:10.1016/j.jqsrt.2014.08.019