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ABSTRACT

We use a series of ray-tracing experiments to determine the magnification distribution of high-redshift sources by
gravitational lensing.We determine empirically the relation betweenmagnification and redshift, for various cosmological
models.We then use this relation to estimate the effect of lensing on the determination of the cosmological parameters
from observations of high-z supernovae. We found that, for supernovae at redshifts z < 1:8, the effect of lensing is
negligible compared to the intrinsic uncertainty in the measurements. Using mock data in the range 1:8 < z < 8, we
show that the effect of lensing can become significant. Hence, if a population of very high z supernovae was ever
discovered, it would be crucial to fully understand the effect of lensing, before these SNe could be used to constrain
cosmological models. We show that the distance moduli m�M for an open CDM universe and a �CDM universe
are comparable at z > 2. Therefore, if supernovae up to these redshifts were ever discovered, it is still the ones in the
range 0:3 < z < 1 that would distinguish these two models.

Subject headinggs: cosmology: theory — gravitational lensing — large-scale structure of universe —
supernovae: general

1. INTRODUCTION

High-redshift supernovae have become a major tool in modern
cosmology. By measuring their apparent magnitudes, we can
estimate their luminosity distances dL (see Tonry et al. 2003;
Barris et al. 2004; Riess et al. 2004 and references therein). Since
the relationship between dL and the redshift z depends on the cos-
mological parameters, observations of distant supernovae (SNe)
can constrain the cosmological model. Prior to the announcement
of theWilkinson Microwave Anisotropy Probe (WMAP) results
(Bennett et al. 2003), observations of high-z SNe provided the
most compelling evidence of the existence of a nonzero cosmo-
logical constant. Since then, they have been used in combination
with the WMAP data to refine the determination of the cosmo-
logical parameters.

The luminosity distances dL are determined by combining the
observed fluxes F with estimates of the SNe luminosities L. Un-
certainties in dL are caused by uncertainties in L, because SNe are
not perfect standard candles. The flux F ismuch easier tomeasure,
but for distant sources the value of F might be altered by gravi-
tational lensing caused by the intervening distribution of matter.
For instance, a magnification � > 1 would result in an increase
in F, and an underestimation of dL.

Estimating the effect of lensing on the statistics of high-z
supernovae is a complex problem. Using either an analytical
model or ray-tracing simulations, we can estimate the effect of
lensing of a large number of sources in a statistical sense. We
would then need to redo the error analysis on the SNe data to
include in a consistent way the effect of lensing. This would be
a very complex task, and in this paper we have chosen a much
simpler approach. Our goal is not to obtain a precise estimate of
the error introduced by lensing, but rather to assess the impor-
tance of this effect: Is it dominant, important, or negligible, and for
what range of redshift? And how does it affect the discrimination
between different cosmological models? To answer these ques-

tions, we take at face value the published results of Type Ia SNe,
including their error bars, which account for every source of un-
certainty but gravitational lensing. Then, we include a posteriori
the effect of lensing, to estimate the change in the errors. This ap-
proach is not rigorous at all, and does not constitute a substitute
for a rigorous treatment of the errors. But it has the great ad-
vantage of simplicity. We do not have to redo the detailed error
analysis performed by the high-redshift SNe groups, and, more
importantly, our conclusions will not be tied to any particular
sample or particular data reduction and error analysis technique
used by any particular group. We are seeking to make generic
statements about the importance of lensing (or lack of ) that are
relevant to any current or future sample of high-z SNe.

The lensing of distant supernovae has been the focus of several
recent studies. In an early study, Wambsganss et al. (1997) used
ray-tracing experiments to estimate the effect of weak lensing
on the determination of the deceleration parameter q0. Ménard
& Dalal (2005), Dodelson & Vallinotto (2006), and Munshi &
Valageas (2006) focused on SNe as a mean to study the nature
of weak lensing. The issue of determining the cosmological pa-
rameters by distant SNe, and how this determination is affected by
lensing, was addressed byWang (2005), who used semianalytical
models to determine the magnification distribution function; Holz
& Linder (2005), who used Monte Carlo ray-tracing simulations
to study the effect of weak and strong lensing; and Gunnarsson
et al. (2006) and Jönsson et al. (2006), who estimated the effect
on lensing along individual lines of sight by considering the prop-
erties of foreground galaxies in the same direction. These various
studies concluded that the effect of lensing on current determi-
nations of the cosmological parameters is small. Aldering et al.
(2006) discussed the effect of gravitational lensing on a popula-
tion of SNe at z > 1:7.

What distinguishes our approach is mostly its simplicity. Our
calculations depend on very few assumptions, and this implies
a certain amount of robustness to our results. Even though we
rely on numerical simulations, this work should be regarded as
a back-of-the-envelope calculation, whose purpose is to obtain
a qualitative estimate of the effect of lensing on the determination
of cosmological parameters by distant SNe. Using ray-tracing

1 Département de physique, de génie physique et d’optique, Université
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experiments, rather than a semianalytical approach, enables us
to extend our study to redshifts much higher than the ones con-
sidered by Wang (2005) and Holz & Linder (2005).

This paper is organized as follow: In x 2 we describe our
calculation of the magnification distribution P(�), and how to
estimate that distribution at any redshift z. In x 3 we describe the
real and mock samples of supernovae we use for our calculations.
Results are presented in x 4. In x 5 we address various observa-
tional issues. Summary and conclusion are presented in x 6.

2. THE MAGNIFICATION DISTRIBUTION FUNCTION

2.1. Simulations

We have developed a ‘‘multiple lens-plane algorithm’’ to
study light propagation in inhomogeneous universes (Premadi
et al. 1998, & 2001a, 2001b; Martel et al. 2000). In this algo-
rithm, the space between the observer and the sources is divided
into a series of cubic boxes of comoving size 128 Mpc, and the
matter content of each box is projected onto a plane normal to
the line of sight. The trajectories of light rays are then computed
by adding successively the deflections caused by each plane.

To use this algorithm, we need to provide a description of
the matter distribution along the line of sight. Matter is divided
into two components: background matter and galaxies. We use
a P3M algorithm (Hockney & Eastwood 1981) to simulate the
distribution of background matter. The simulations used 643

equal-mass particles and a 1283 PM grid, inside a comoving vol-
ume of size 128Mpc. Thematter distribution in the different cubes
along the line of sight then corresponds to the state of the simu-
lation at different redshifts.3 We then use a Monte Carlo method
for locating galaxies into the computational volume (Martel et al.
1998; Premadi et al. 1998). Galaxies are located according to
the underlying distribution of background matter. Morphological
types are ascribed according to the morphology-density relation
(Dressler 1980). Galaxies are modeled as nonsingular isothermal
spheres, with rotation velocities and core radii that vary with
luminosity and morphological types.

We consider three cold dark matter (CDM) cosmological
models: (1) a flat, cosmological constant model (�CDM) with

�0 ¼ 0:27, k0 ¼ 0:73, andH0 ¼ 71 km s�1 Mpc�1—this model
is in agreement with the results of theWMAP satellite (Bennett
et al. 2003); (2) a low-density model with�0 ¼ 0:3, k0 ¼ 0, and
H0 ¼ 75 km s�1Mpc�1; and (3) a matter-dominatedmodel with
�0 ¼ 1, k0 ¼ 0, and H0 ¼ 75 km s�1 Mpc�1. For each model,
we consider sources at eight different redshifts: zs ’ 1, 2, 3, 4,
5, 6, 7, and 8.4 For each combination model-redshift, we per-
formed 10Y20 ray-tracing experiments. Each experiment con-
sists of propagating a square beam of 101 ; 101 ¼ 10;201 rays
back in time from the present to redshift zs, through the matter
distribution. The rays in the beam were widely separated, by 60,
and therefore sampled different regions of space. We computed
the magnification matrix A along each ray. The magnification �
is then given by

� ¼ 1

detA
: ð1Þ

Figure 1 shows the distribution ofmagnifications for the�-model.
The distribution peaks at � < 1, and is strongly skewed. The
width of the distribution increases with the source redshift. The
distributions for the other two models are qualitatively similar.

2.2. Standard Deviation and Magnification Distribution

We have determined the distributions P(�) at some particular
redshifts zs. Since SNe do not cooperate by going off only at these
redshifts, we now want to interpolate between these distributions,
to obtain P(�) at any redshift. First, for each model and each
source redshift zs we considered, we compute the standard de-
viation �� of the magnification distributionP(�). The values are
shown in Figure 2. We use an empirical fit of the form

�� ¼ bz

1þ cz
; ð2Þ

where the values of b and c are given in Table 1. This enables us
to estimate the values of �� at any redshift. Using the stochastic
universe method (SUM) of Holz &Wald (1998), Holz & Linder
(2005) derived a linear relation between �eff and z in the range
0 � z � 2, for a �CDM model, where �eff is the effective stan-
dard deviation of a single measurement, which is not the same

3 In practice, we combine cubes from different simulations in order to avoid pe-
riodicities along the line of sight. See also the interesting alternative suggested by
Vale & White (2003).

4 The exact values of the source redshifts depend on the locations of the lens
planes, which vary among models.

Fig. 1.—Distribution of magnifications for the �CDM model. The various
curves correspond to different source redshifts: zs ¼ 1 (narrowest curve), 2, 3, 4,
5, 6, 7, and 8 (widest curve).

Fig. 2.—Standard deviation �� vs. redshift, for all three models considered.
The solid lines show empirical fits of the form �� ¼ bz/(1þ cz). The dotted line
shows the relation derived by Holz & Linder (2005).
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thing as our standard deviation ��. We plotted their result in
Figure 2 for comparison. There is a fairly good agreement be-
tween the twomethods at redshifts z � 2. The linear relation has a
slope of 0.088. Our empirical fit for the �CDM model5 has a
slope that varies from 0.120 to 0.069 in the range z ¼ 0Y2.

To determine P(�) at any redshift z, we interpolate between the
distributions we have already determined. Consider two known
distributions P1(�) and P2(�) at redshifts z1 and z2 that bracket z.
These distributions satisfy the propertiesZ 1

0

Pi(�) d� ¼ 1; ð3Þ
Z 1

0

�Pi(�) d� ¼ 1; ð4Þ
Z 1

0

(�� 1)2Pi(�) d� ¼ (�2
�)i; ð5Þ

where i ¼ 1, 2. We define a new distribution,

P(�) ¼
½(�2

�) 2 � �2
� �P1(�)þ ½�2

� � (�2
�)1�P2(�)

(�2
�)2 � (�2

�)1
: ð6Þ

We can easily check that this distribution also satisfies the re-
lations (3)Y(5). This enables us to estimate the magnification dis-
tribution P(�) at any redshift z. We first determine ��(z) from
equation (2), and then substitute it in equation (6) to get P(�) at
that redshift.

3. THE SUPERNOVAE CATALOGS

3.1. The Tonry et al. Sample

Observations of high-redshift supernovae provide an estimate
of the luminosity distance dL. These results are reported in various
form in the literature. Some authors express their measurements
in terms of effective magnitudes of distance moduli. The High-z
Supernova Search Team (Tonry et al. 2003; Barris et al. 2004;
Riess et al. 2004) express their measurements in the following
form:

log (dLH0) ¼ a � �a; ð7Þ

where H0 is the Hubble constant, a is the ‘‘measurement,’’ and
�a is the ‘‘intrinsic uncertainty,’’ which includes every possible
source of error, except gravitational lensing. In this expression,
dLH0 is expressed in units of kilometers per second. These au-
thors actually use the notation h log (dH0)i for a and � for �a.

In this paper we work with the sample of Tonry et al. (2003).
This is not the most up-to-date sample, but it is sufficient for our
purpose. This sample is comprised of 230 Type Ia SNe in the
redshift range 0 < z < 1:8, with 79 of them being located at

redshifts z > 0:3 (including five at redshifts z > 0:9). The val-
ues of a and �a can be read directly in the eighth and ninth
columns of their Table 8, respectively.

3.2. A Mock Catalog of Very High z Supernovae

We generated a mock catalog of 43 SNe in the range 1:8 <
z < 8:1. For each ‘‘supernova,’’ we need to choose a redshift z, a
measured value a, and an uncertainty �a . There is of course no
rigorous method for doing that, since these SNe do not exist. To
provide a good coverage of the redshift range of interest, we used
43 equally spaced values of z between z ¼ 1:8 and 8.1. To deter-
mine �a , we first plotted �a versus z, for the Tonry et al. (2003)
sample, to look for trends. There is a large number of SNe with
z < 0:1, �a < 0:05. If we focus on the 79 SNe at redshift z > 0:3,
we do not see any obvious trend, and in particular �a does not
appear to increase with redshift. So we chose, somewhat arbi-
trarily, the nine SNe6 at z > 0:828. For these SNe, the mean and
standard deviation of the uncertainties are �̄a ¼ 0:0631 and �� ¼
0:0113, respectively.We then chose the values of �a for ourmock
SNe randomly, by drawing them from a normal distribution with
mean �̄a and standard deviation ��. This ensures a smooth tran-
sition between the real and mock samples.

To determine a, we assume that the underlying cosmology cor-
responds to a �CDM universe (as supported by the real sample).
We then use

a ¼ a� þ�a; ð8Þ

where a� � log (d�H0) is the actual value of log (dLH0) in a
�CDMuniverse, and�a is a random number drawn from a nor-
mal distribution with mean 0 and standard deviation given by
the value of �a we just calculated.

4. THE EFFECT OF LENSING ON STATISTICS
OF HIGH-z SUPERNOVAE

4.1. Compounding the Errors

As we explained in x 1, our goal is not to perform a rigorous
error analysis of the uncertainties resulting from the possibility
of lensing, but rather to estimate a posteriori the effect of lensing
on the uncertainties already present in the analysis.

We estimate the effect of lensing as follows: The distances of
high-z supernovae are reported in the literature in the format
given by equation (7), where �a is the intrinsic uncertainty (i.e.,
not caused by lensing). The distance dL is related to the lumi-
nosity L and flux F by

F ¼ L

4�d 2
L

: ð9Þ

We use equations (7) and (9) to eliminate dL, and get

L1=2H0 ¼ 10a10��a (4�F )1=2: ð10Þ

The effect of lensing will be to modify the flux F. To account
for it, we replace F by F � �F in equation (10), and perform a
Taylor expansion to first order in �F,

L1=2H0 ¼ 10a10��a (4�F )1=2
�
1 � �F

2F

�
: ð11Þ

TABLE 1

Coefficients of Approximation for ��

Model �0 k0

H0

(km s�1 Mpc�1) b c

�CDM.............. 0.27 0.73 71 0.120 0.16

Open................. 0.30 0.00 75 0.085 0.17

EdS................... 1.00 0.00 75 0.117 0.26

5 We use �0 ¼ 0:27; Holz & Linder (2005) used �0 ¼ 0:28.

6 We deliberately avoided SN 97G and SN 76cl, whose uncertainties are
much larger than those of any SNe at comparable redshift.
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This expression reduces to

log (dLH0) ¼ a � �a �
�F

2F ln 10
: ð12Þ

The last term represents the uncertainty due to lensing. For a given
supernova with magnification �, �F /F ¼ �� 1. Of course, we
will never know the value of � for a single source. But for a large
number of sources, we can use statistics. First, the simplest, lowest
order approximation for a ‘‘typical’’ value of � is� ¼ h�i � �� ¼
1 � ��, or equivalently �F /F � ��. Equation (12) reduces to

log (dLH0) ¼ a � �a � ��; ð13Þ

where ��(z) ¼ ��(z)/2 ln 10 can be computed using the empirical
relations plotted in Figure 2.We use the values of a and �a reported
by Tonry et al. (2003, their Table 8). In Figure 3 we plot the ratio
�� /�a versus z (left of the dotted lines). This quantity increaseswith
redshift, but never gets higher than 0.5 for the Tonry et al. sample.
Furthermore, we shall assume that �a and �� are statistically in-
dependent, and combine them in quadrature, using

� ¼ (�2a þ �2�)
1=2; ð14Þ

where � is the total error. The contribution of lensing to this error
is then of order 25% at most.

For each supernova, we compute the quantity �(m�M )
(deviation of the difference between apparent and absolute mag-
nitude, relative to an empty universe), using

�(m�M ) ¼ 5 log (dLH0)� 5 log (dLH0)empty

¼ 5 log (dLH0)� 5 log

"
cz

�
1þ z

2

�#
: ð15Þ

We then average the quantities�(m�M ) and � in redshift bins,
using

�(m�M )½ �j ¼�iwi�(m�M )=�iwi; ð16Þ
�j ¼ (1=�iwi)

1=2; ð17Þ

where

wi ¼ 1=�2i ; ð18Þ

and the sums are over all data points i in bin j [note: eq. (17) comes
from 1/�2j ¼

P
i (1/�

2
i )]. Notice that this method of averaging

is much fancier than what appears to be done in the supernovae
papers. For instance, Figure 9 of Tonry et al. (2003) shows an av-
eraging over redshift bins, which is based on the median of the
data and apparently does not take into account the uncertainties
�a on the individual supernovae.
Figure 4 shows a Hubble diagram [deviation �(m�M ) vs.

redshift]. The data points and error bars on the left-hand side of
the dotted lines correspond to the values given by equations (16)

Fig. 3.—Ratio �� /�a vs. redshift. The dotted lines separate the real data of
Tonry et al. (left side) from the mock, high-redshift data (right side).

Fig. 4.—Hubble diagram showing themagnitude deviation�(m�M ) relative
to an empty universe, for the three models considered. The dotted lines separate
the Tonry et al. (2003) data (left ) from the mock data (right ). In the top panel, the
three curves, from top to bottom, show the analytical result for the cosmological
models (�0; k0) ¼ (0:27; 0:73), (0.3,0.0), and (1.0,0.0), respectively. The error
bars show 90% confidence level. The last three panels reproduce the data of the
top panel, but have been corrected to account for lensing. Since this correction is
model-dependent, the three models are plotted on separate panels.
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and (17), respectively. The three curves, from top to bottom,
show the exact results for the �CDM, low-density, and matter-
dominated models, respectively. The results support the flat
�CDM model and exclude the other models considered. The
other panels of Figure 4 show the effect of lensing (the three
models have to be plotted separately, because the correction due
to lensing, which uses the relations plotted in Fig. 2, is model-
dependent). This effect is totally negligible. The largest correc-
tion to the error bars is about 10% for the highest redshift bin,
for the �CDM model.

Clearly, the potential error introduced by lensing is negligible in
comparison to the intrinsic error in the measurement, at least for
SNe at redshifts z < 1:8. Gunnarsson et al. (2006) and Jönsson
et al. (2006) reach the same conclusion, We now estimate the
effect of lensing on a yet undiscovered population of very-high-z
SNe, using our mock catalog. The ratios �� /�a are plotted in Fig-
ure 3, on the right hand side of the dotted lines. The effect of
lensing rapidly becomes important at redshift z > 2, especially
for the �CDMmodels. We find many SNe with j��j >�a, that is,
the correction due to lensing is larger than the intrinsic uncertainty.

The points located on the right hand side of the dotted lines in
Figure 4 shows the results for the mock data. The error bars get
significantly bigger when lensing is included. Furthermore, at
redshift z � 3, it becomes very difficult to distinguish the open,
low-density model from the cosmological constant model, be-
cause the theoretical curves intersect. Keeping in mind the caveat
that the mock catalog was built under the assumption that the
underlying cosmology was �CDM, we see that the Einstein-de
Sitter model is totally ruled out by SNe at z > 2, but the open
model is not. Indeed, it is clear that SNe at z > 2would be rather
useless in distinguishing an open CDM and a �CDM model:
the theoretical curves get closer, whereas the error bars become

larger. It is, interestingly, the SNe in the redshift range 0:3 <
z < 1 that would still provide the best discriminant between
these two models, and data in that redshift range are already
available.

4.2. Monte Carlo Approach

The calculation presented in the previous section relies entirely
in the standard deviation �� for estimating the uncertainties
caused by lensing. This approach would probably be sufficient
if the distributions of magnifications P(�) were Gaussian. How-
ever, for sources at large redshifts, P(�) is strongly skewed, as
Figure 1 shows. The large majority of sources are demagnified,
as the light reaching the observer travels mostly through under-
dense regions of the universe, while a few sources are strongly
magnified, especially those that happen to be aligned with a
massive galaxy at intermediate redshift.

To account for the distribution of magnifications, we consider
all SNe at redshifts z > 0:9 (five from the Tonry sample, 43 from
the mock catalog). For each one, we determine the distribution
P(�) at its redshift z, using equation (6), and then choose a mag-
nification � by drawing it randomly from the distribution P(�).
We then compute �� ¼ �F /2F ln 10 ¼ (�� 1)/2 ln 10. The
resulting ratios j��j/�a are plotted in Figure 5. Comparing with
Figure 3, we find only a few SNe for which this ratio exceeds
unity. For all redshifts and allmodels, we find that the distributions
P(�) peak at a value �peak < 1 such that j�peak � 1j < ��. Hence,
setting �F /F ¼ �� (instead of �F /F ¼ �� 1), as we did in
x 4.1, overestimates the effect of lensing for most SNe. How-
ever, the distributions are very skewed, and as a result a few
SNe are highly magnified, as Figure 5 shows.

Figure 6 shows the resulting Hubble diagram. Comparing with
Figure 4, we find that the error bars are significantly smaller. The
effect of lensing is less important when we use the actual distri-
bution ofmagnificationsP(�), and not only its standard deviation.
However, the results at z > 1:8, which assume an underlying
�CDM cosmology, still cannot rule out the open CDM model;
the error bars are still too large.

5. DETECTION LIMIT AND BIASING

So far, we have assumed that any supernova, with any value
of z and �, can be observed. This assumption is probably valid
over the range 0 < z < 2, which includes all the current obser-
vations. But as the redshift gets higher, it becomes increasingly
difficult to observe supernovae with current and even future te-
lescopes, because of the combined effect of the flux reduction
and the light being shifted to the near-infrared. It might just
be impossible to detect a supernova at redshift z > 2 unless, of
course, it is magnified by lensing. Marri & Ferrara (1998) argue
that, with magnification taken into account, it might be possible
to observe Type II SNe at redshifts up to z ¼ 10. Of course, if
only the highly magnified SNe are observable, this introduces
biasing, an effect that we must take into account.

Here we do not want to perform a detailed analysis similar to
the one of Marri & Ferrara (1998) but just to get a rough estimate
of the importance of biasing. The key results of the analysis of
Marri & Ferrara (1998) are shown in their Figure 7, which shows,
as a function of redshift, the AB apparentmagnitude in the J,K, L,
and M bands, with and without lensing. They also plot the ex-
pected flux limit of the James Webb Space Telescope.7 From this
figure, we see that without lensing, the apparent magnitudes are

Fig. 5.—Same as Fig. 3, but with �� computed using the Monte Carlo ap-
proach for all SNe (real or mocked) at redshift z > 0:9.

7 Known then as the Next Generation Space Telescope.
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below the detection limit at high redshift. When lensing is in-
cluded, the magnitudes in the J and K bands are above the de-
tection limit. Their analysis was for Type II SNe. Type Ia SNe
are typically 1.5 mag brighter, and therefore much easier to detect.
Neglecting the details of the spectra, we can simply take Figure 7
of Marri & Ferrara (1998) and shift all the curves upward by
1.5 mag. We find that, without lensing, Type Ia SNe would be
visible in the J and K bands, and almost visible in the L band,
at redshifts up to z � 8. With lensing, most SNe would be de-
magnified, but the reduction in flux is typically of the order
10%Y20%, that is, a correction of 0.103Y0.198 mag. Hence, all
high-z Type Ia SNe should be detectable, using the proper tele-
scope, and therefore we were justified to ignore any biasing
effect. This being said, the identification of Type Ia SNe requires
that we obtain a spectrum, and this could be quite challenging at
these extreme redshifts.

We have assumed that the typical intrinsic uncertainties �a do
not grow with redshift for z > 1:8, based on the absence of

obvious trend at z P 1:8. If the uncertainties do growwith redshift,
our conclusion that understanding the effect of lensing at high
redshift would be weakened, in the sense that these data would be
rather useless no matter how well lensing is understood. Further-
more, it would reinforce our conclusion that SNe at intermediate
redshifts are more useful to discriminate between different cos-
mological models.
We should also ask whether Type Ia SNe at redshift z ¼ 8

can actually exist. For a �CDM model with a Hubble constant
of 71 km s�1 Mpc�1, this redshift corresponds to an age of the
universe of 650 Myr. Subtracting the formation and evolutionary
time of the progenitor, we are getting embarrassingly close to the
big bang. Type II SNe would be a far better candidate for high-z
SNe, since the evolutionary time of their progenitors are much
shorter. But then only the few that are magnified would be de-
tectable, and their number might be too small to perform any
meaningful statistics on them.

6. SUMMARY AND CONCLUSION

We have performed a series of ray-tracing experiments using
a multiple lens-plane algorithm. We have determined the distri-
butions of magnifications P(�) for sources in the redshift range
0 < z < 8, for three different cosmological models.We have used
these distributions to estimate the effect of gravitational lens-
ing on the determination of the cosmological parameters with
high-redshift Type Ia supernovae. We used a generic, a pos-
teriori approach that is not tied to any particular sample.
We found that errors introduced by lensing are unimportant for

SNewith redshift z < 1:8. These errors are negligible compared to
the intrinsic errors already present in the supernovae data. Since
those intrinsic errors do not prevent us from determining the cos-
mological parameters, the additional errors introduced by lens-
ing have no consequences. A similar conclusion was reached by
Aldering et al. (2006).
Using a mock catalog of high-z SNe, extending to z ¼ 8:1,

we showed that the effect of lensing on a hypothetical population
of SNe at redshifts z > 2 could be quite significant, and must be
understood before such SNe could be used to constrain cosmo-
logical models. Furthermore, the open CDM and �CDM mod-
els are difficult to distinguish at that redshift. We showed that,
even if SNe at redshift z � 8 were ever discovered, it is the SNe
in the range z ¼ 0:3Y1 that would still provide the best discrim-
inant between these two models. The data at that redshift already
exist, and they support the �CDM model.

This work benefited from stimulating discussions with Gilbert
Holder, Daniel Holz, Eric Linder, Massimo Meneghetti, and
Christopher Vale. The calculations were performed at the Texas
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thanks the Canada Research Chair program and NSERC for
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