www.sron.nl/122-lea/hifi.html

25-11-2014
rosetta-and-herschel-hifi-the-search-for-the-origin-of-earth-s-water

Rosetta and Herschel/HIFI: the search for the origin of Earth's water

Rosetta and Herschel/HIFI: the search for the origin of Earth's waterAfter its historic landing on 67P/Tchuryumov-Gerasimenko on November 12th, Rosetta has very precisely charted the amount of water on the comet and the ratio heavy/normal water. The Herschel-HIFI mission has done this for a number of objects in space. As such the two ESA cornerstone missions are connected in the search for the origin of Earth's water.         More
03-11-2014
jelle-kaastra-professor-at-leiden-university

Jelle Kaastra professor at Leiden University

Today 3 November SRON researcher Jelle Kaastra delivered his inaugural speech as professor at Leiden University. Kaastra - who is appointed professor High Energy Astrophysics at Leiden - gave in his speech an overview of X-ray diagnostics in space.         More
03-11-2014
citizen-science-network-produces-accurate-maps-of-atmospheric-dust

Citizen science network produces accurate maps of atmospheric dust

Measurements by thousands of citizen scientists in the Netherlands using their smartphones and the iSPEX add-on are delivering accurate data on dust particles in the atmosphere that add valuable information to professional measurements. The iSPEX team, led by Frans Snik of Leiden University, analyzed all measurements from three days in 2013 and combined them into unique maps of dust particles above the Netherlands. The results match and sometimes even exceed those of ground-based measurement networks and satellite instruments.         More
23-10-2014
magnetic-field-of-accretion-disk-finally-captured

Magnetic field of accretion disk finally captured

For the first time astronomers have been able to capture the magnetic field in the accretion disk around a young star. The shape of the field was a big surprise. The discovery suggests that magnetic fields play an important role in forming a planetary system like our own, but that the process is more complicated than our current understanding. The research results have been published in Nature today.         More
07-10-2014
recordaantal-bezoekers-sron-open-dag

Record number of visitors at SRON Open Day

The Open Day of SRON on Sunday, October 5, was a great success: a total of 1300 visitors came to the locations in Utrecht and Groningen. The visitors were very enthusiast and impressed by the many activities of SRON.          More

Home

Search documents

Document number release

Post operations

Documents

Summary

HIFI's superb spectral resolution coupled with its ability to observe thousands of molecular, atomic and ionic lines at submillimeter wavelengths make it the instrument of choice to address many of the key  questions in modern astrophysics related to the cyclic interaction of stars and the interstellar medium:
  1. HIFI will probe the physics, kinematics and energetics of star forming regions through their cooling lines, including H2O, the major coolant.
  2. HIFI will survey the molecular inventory of such diverse regions as shocked molecular clouds, dense Photon-Dominated Regions (PDRs), diffuse atomic clouds, Hot Cores and proto-planetary disks around newly formed stars, winds from dying stars and toroids interacting with AGN engines.
  3. HIFI is uniquely suited to search for low-lying ro-vibrational transitions of complex species such as PAHs and, thus, to investigate the origin and evolution of the molecular universe.
  4. HIFI can provide the out-gassing rate of comets through H2O rotational lines and determine the vertical distribution of H2O in the giant planets and on Mars.
  5. HIFI can measure the mass-loss history of stars which, rather than nuclear burning, regulates stellar evolution after the main sequence, and dominates the gas and dust mass balance of the ISM.
  6. HIFI will measure the FIR line spectrum of nearby galaxies as templates for distant, possibly primordial galaxies.

The main reason to build HIFI was because the above sketched science cannot be done from the ground, since atmospheric water lines block all radiation coming from space. On the right plots are given of the atmospheric transmission.

HIFI is optimised to address the astronomical key questions given above. All of these require high spectral resolving powers and sensitivity. Combining the high spectral resolving power of the radio heterodyne technique with quantum-noise limited detection from superconductor physics and state-of-the-art microwave technology, has made it possible to develop an instrument with a continuous frequency coverage from 480 to 1250 GHz in five bands, plus a sixth band providing coverage for 1410-1910 GHz at an unrivalled spectral resolution and ultimate sensitivity. This instrument is able to perform rapid and complecte spectral line surveys with resolving powers from 103 up to 107 (300 - 0.03 km/s) and deep line observations.

HIFI Band

1

2

3

4

5

6

Coverage (GHz)

480-
640

640-
800

800-
960

960-
1120

1120-
1250

1410-
1910

Half Power
Beamwidth
(arcsec)

39

30

25

21

19

13

Rec. Noise
(DSB) in K
Baseline values

110

145

175

210

370

800